Displaying 241 – 260 of 952

Showing per page

Doubling bifurcation of a closed invariant curve in 3D maps

Laura Gardini, Iryna Sushko (2012)

ESAIM: Proceedings

The object of the present paper is to give a qualitative description of the bifurcation mechanisms associated with a closed invariant curve in three-dimensional maps, leading to its doubling, not related to a standard doubling of tori. We propose an explanation on how a closed invariant attracting curve, born via Neimark-Sacker bifurcation, can be transformed into a repelling one giving birth to a new attracting closed invariant curve which has doubled...

Dynamical systems arising from elliptic curves

P. D'Ambros, G. Everest, R. Miles, T. Ward (2000)

Colloquium Mathematicae

We exhibit a family of dynamical systems arising from rational points on elliptic curves in an attempt to mimic the familiar toral automorphisms. At the non-archimedean primes, a continuous map is constructed on the local elliptic curve whose topological entropy is given by the local canonical height. Also, a precise formula for the periodic points is given. There follows a discussion of how these local results may be glued together to give a map on the adelic curve. We are able to give a map whose...

Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion

Alexander Fel'shtyn, Richard Hill (1999)

Banach Center Publications

In this paper we prove trace formulas for the Reidemeister numbers of group endomorphisms and the rationality of the Reidemeister zeta function in the following cases: the group is finitely generated and the endomorphism is eventually commutative; the group is finite; the group is a direct sum of a finite group and a finitely generated free Abelian group; the group is finitely generated, nilpotent and torsion free. We connect the Reidemeister zeta function of an endomorphism of a direct sum of a...

Dynamics of an artificial slope

Bartoň, Stanislav (2021)

Programs and Algorithms of Numerical Mathematics

The slope shape is replaced by a 3D regression function which corresponds with high precision to the position of several hundred points which were determined on the surface of the slope body. The position of several points was repeatedly measured for several years. The time changes in the position of these points were used to create regression functions that describe vertical movements, slope settlement and horizontal movements, slope movement. The model results are presented in the form of mathematical...

Dynamics of symmetric holomorphic maps on projective spaces.

Kohei Ueno (2007)

Publicacions Matemàtiques

We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

Currently displaying 241 – 260 of 952