On the construction of a -counterexample to the Hamiltonian Seifert conjecture in .
The aim of this paper is twofold. On the one hand, we want to discuss some methodological issues related to the notion of strange nonchaotic attractor. On the other hand, we want to formulate a precise definition of this kind of attractor, which is "observable" in the physical sense and, in the two-dimensional setting, includes the well known models proposed by Grebogi et al. and by Keller, and a wide range of other examples proposed in the literature. Furthermore, we analytically prove that a whole...
We show that for a finitely generated group of C² circle diffeomorphisms, the entropy of the action equals the entropy of the restriction of the action to the non-wandering set.
Given a vector field X on an algebraic variety V over ℂ, I compare the following two objects: (i) the envelope of X, the smallest algebraic pseudogroup over V whose Lie algebra contains X, and (ii) the Galois pseudogroup of the foliation defined by the vector field X + d/dt (restricted to one fibre t = constant). I show that either they are equal, or the second has codimension one in the first.
The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the -dimensional torus, its identity component is a simple group. For fibered manifolds, for manifolds admitting special semi-free actions and for 2- or 3-dimensional manifolds with nontrivial actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.
We investigate the properties of the Hausdorff dimension of the attractor of the iterated function system (IFS) {γx,λx,λx+1}. Since two maps have the same fixed point, there are very complicated overlaps, and it is not possible to directly apply known techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue almost all parameters (γ,λ), γ < λ. This result only holds for almost all parameters: we find a dense set of parameters (γ,λ) for which the Hausdorff dimension...
We study non-invertible piecewise hyperbolic maps in the plane. The Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents, provided that the map satisfies a transversality condition. Explicit examples of maps for which this condition holds are given.