Some analogies between number theory and dynamical systems on foliated spaces.
The purpose of this paper is to establish some common fixed point results for -nondecreasing mappings which satisfy some nonlinear contractions of rational type in the framework of metric spaces endowed with a partial order. Also, as a consequence, a result of integral type for such class of mappings is obtained. The proved results generalize and extend some of the results of J. Harjani, B. Lopez, K. Sadarangani (2010) and D. S. Jaggi (1977).
The first part of this paper is concerned with geometrical and cohomological properties of Lie flows on compact manifolds. Relations between these properties and the Euler class of the flow are given.The second part deals with 3-codimensional Lie flows. Using the classification of 3-dimensional Lie algebras we give cohomological obstructions for a compact manifold admits a Lie flow transversely modeled on a given Lie algebra.
In this survey article we discuss some recent results concerning strong spectral estimates for Ruelle transfer operators for contact flows on basic sets similar to these of Dolgopyat obtained in the case of Anosov flows with C1 stable and unstable foliations. Some applications of Dolgopyat's results and the more recent ones are also described.