Obtuse triangular billiards. I: Near the triangle.
Consider the domain and let the free path length be defined as In the Boltzmann-Grad scaling corresponding to , it is shown that the limiting distribution of is bounded from below by an expression of the form C/t, for some C> 0. A numerical study seems to indicate that asymptotically for large t, . This is an extension of a previous work [J. Bourgain et al., Comm. Math. Phys.190 (1998) 491-508]. As a consequence, it is proved that the linear Boltzmann type transport equation is inappropriate...
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads...
A planar polygonal billiard is said to have the finite blocking property if for every pair of points in there exists a finite number of “blocking” points such that every billiard trajectory from to meets one of the ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces....
We study non-invertible piecewise hyperbolic maps in the plane. The Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents, provided that the map satisfies a transversality condition. Explicit examples of maps for which this condition holds are given.