Bar Billiards and Poncelet’s Porism
We consider the billiard map in the hypercube of . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that is the order of magnitude of the complexity.
We study two complex invariant manifolds associated with the parabolic fixed point of the area-preserving Hénon map. A single formal power series corresponds to both of them. The Borel transform of the formal series defines an analytic germ. We explore the Riemann surface and singularities of its analytic continuation. In particular we give a complete description of the “first” singularity and prove that a constant, which describes the splitting of the invariant manifolds, does not vanish. An interpretation...
We prove real bounds for interval maps with one reflecting critical point.
Knowledge about the behavior of discontinuous piecewise-linear maps is important for a wide range of applications. An efficient way to investigate the bifurcation structure in 2D parameter spaces of such maps is to detect specific codimension-2 bifurcation points, called organizing centers, and to describe the bifurcation structure in their neighborhood. In this work, we present the organizing centers in the 1D discontinuous piecewise-linear map...