Faà di Bruno's formula and nonhyperbolic fixed points of one-dimensional maps.
We prove that for each integer there is an open neighborhood of the identity map of the 2-sphere , in topology such that: if is a nilpotent subgroup of with length of nilpotency, generated by elements in , then the natural -action on has nonempty fixed point set. Moreover, the -action has at least two fixed points if the action has a finite nontrivial orbit.
We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.
We consider a fixed point free homeomorphism of the closed band which leaves each leaf of a Reeb foliation on invariant. Assuming is the time one of various topological flows, we compare the restriction of the flows on the boundary.
Let be the tent map with slope a. Let c be its turning point, and the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
We consider-without restriction to the piecewise monotone case-a forcing relation on interval (transitive, roof, bottom) patterns. We prove some basic properties of this type of forcing and explain when it is a partial ordering. Finally, we show how our approach relates to the results known from the literature.
Let ℳ be the set of pairs (T,g) such that T ⊂ ℝ is compact, g: T → T is continuous, g is minimal on T and has a piecewise monotone extension to convT. Two pairs (T,g),(S,f) from ℳ are equivalent if the map h: orb(minT,g) → orb(minS,f) defined for each m ∈ ℕ₀ by is increasing on orb(minT,g). An equivalence class of this relation-a minimal (oriented) pattern A-is exhibited by a continuous interval map f:I → I if there is a set T ⊂ I such that (T,f|T) = (T,f) ∈ A. We define the forcing relation on...