Page 1

Displaying 1 – 8 of 8

Showing per page

Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle

Isabelle Liousse (2005)

Annales de l’institut Fourier

Etant donné α irrationnel de type constant, nous donnons des conditions explicites et génériques sur les pentes d’un homéomorphisme f affine par morceaux du cercle de nombre de rotation α , qui garantissent que la mesure de probabilité f -invariante est singulière par rapport à la mesure de Haar. Cet article contient une preuve élémentaire d’un résultat de E. Ghys et V. Sergiescu : ”le nombre de rotation d’un homéomorphisme dyadique est rationnel”. Nous y étudions aussi le ratio set des homéomorphismes...

Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro

Laurent Guieu (1996)

Annales de l'institut Fourier

Une classification complète des stabilisateurs coadjoints du groupe de Bott-Virasoro est obtenue par une méthode essentiellement géométrique. L’outil de base est le nombre de rotation d’un difféomorphisme du cercle. En particulier, nous mettons en évidence la présence de groupes d’isotropie non-connexes et montrons que la transformation de Miura des opérateurs de Hill peut s’interpréter comme une application moment sur l’espace des structures affines du cercle.

Nonhyperbolic one-dimensional invariant sets with a countably infinite collection of inhomogeneities

Chris Good, Robin Knight, Brian Raines (2006)

Fundamenta Mathematicae

We examine the structure of countable closed invariant sets under a dynamical system on a compact metric space. We are motivated by a desire to understand the possible structures of inhomogeneities in one-dimensional nonhyperbolic sets (inverse limits of finite graphs), particularly when those inhomogeneities form a countable set. Using tools from descriptive set theory we prove a surprising restriction on the topological structure of these invariant sets if the map satisfies a weak repelling or...

Noninvertible minimal maps

Sergiĭ Kolyada, L'ubomír Snoha, Sergeĭ Trofimchuk (2001)

Fundamenta Mathematicae

For a discrete dynamical system given by a compact Hausdorff space X and a continuous selfmap f of X the connection between minimality, invertibility and openness of f is investigated. It is shown that any minimal map is feebly open, i.e., sends open sets to sets with nonempty interiors (and if it is open then it is a homeomorphism). Further, it is shown that if f is minimal and A ⊆ X then both f(A) and f - 1 ( A ) share with A those topological properties which describe how large a set is. Using these results...

Non-transitive points and porosity

T. K. Subrahmonian Moothathu (2013)

Colloquium Mathematicae

We establish that for a fairly general class of topologically transitive dynamical systems, the set of non-transitive points is very small when the rate of transitivity is very high. The notion of smallness that we consider here is that of σ-porosity, and in particular we show that the set of non-transitive points is σ-porous for any subshift that is a factor of a transitive subshift of finite type, and for the tent map of [0,1]. The result extends to some finite-to-one factor systems. We also show...

Non-Typical Points for β-Shifts

David Färm, Tomas Persson (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We study sets of non-typical points under the map f β β x mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β > 1.541 found in the above paper can be removed.

Currently displaying 1 – 8 of 8

Page 1