The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set is continuous at σ₀ as the function of the parameter if and only if . Since on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of on an open and dense subset of ∂₀.
e prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2:1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain.
The results extend an analogous fact for polynomials...
Currently displaying 1 –
3 of
3