The search session has expired. Please query the service again.
Let and for and when for , we obtain an effective archimedean counting result for a discrete orbit of in a homogeneous space where is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family of compact subsets, there exists such that for an explicit measure on which depends on . We also apply the affine sieve and describe the distribution of almost primes on orbits of in arithmetic settings....
Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.
Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if , then the attractor has non-empty interior.
We also consider the set of points in which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of is positive. For this special class the full description of is given as well.
This paper continues our work begun...
Currently displaying 1 –
3 of
3