Parameters identification and synchronization of chaotic delayed systems containing uncertainties and time-varying delay.
In this paper, we study the linear Schrödinger equation over the d-dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are...
We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.
We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.
We propose an efficient method for finding a Chebyshev-best soluble approximation to an insoluble system of linear equations over max-plus algebra.
The Lyapunov exponent is a statistic that measures the sensitive dependence of the dynamic behaviour of a system on its initial conditions. Estimates of Lyapunov exponents are often used to characterize the qualitative population dynamics of insect time series. The methodology for estimation of the exponent for an observed, noisy, short ecological time series is still under development. Some progress has been made recently in providing measures of error for these exponents. Studies that do not account...
The Lyapunov exponents (LE) provide a simple numerical measure of the sensitive dependence of the dynamical system on initial conditions. The positive LE in dissipative systems is often regarded as an indicator of the occurrence of deterministic chaos. However, the values of LE can also help to assess stability of particular solution branches of dynamical systems. The contribution brings a short review of two methods for estimation of the largest LE from discrete data series. Two methods are analysed...