Fractal Interpolation in Creating Prefractal Images
We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations,...
In long-time numerical integration of Hamiltonian systems, and especially in molecular dynamics simulation, it is important that the energy is well conserved. For symplectic integrators applied with sufficiently small step size, this is guaranteed by the existence of a modified Hamiltonian that is exactly conserved up to exponentially small terms. This article is concerned with the simplified Takahashi-Imada method, which is a modification of the Störmer-Verlet method that is as easy to implement...
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented...
Two theorems about period doubling bifurcations are proved. A special case, where one multiplier of the homogeneous solution is equal to +1 is discussed in the Appendix.
The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system model into...
The spectral structure of the infinitesimal generator of a strongly continuous cosine function of linear bounded operators is investigated, under assumptions on the almost periodic behaviour of applications generated, in various ways, by C. Moreover, a first approach is presented to the analysis of connection between cosine functions and dynamical systems.
In this work, we present some concepts recently introduced in the analysis and control of distributed parameter systems: Spreadability, vulnerability and protector control. These concepts permit to describe many biogeographical phenomena, as those of pollution, desertification or epidemics, which are characterized by a spatio-temporal evolution