Equidistribution of dynamically small subvarieties over the function field of a curve
In this article we prove an analogue of the equidistribution of preimages theorem from complex dynamics for maps of good reduction over nonarchimedean fields. While in general our result is only a partial analogue of the complex equidistribution theorem, for most maps of good reduction it is a complete analogue. In the particular case when the nonarchimedean field in question is equipped with the trivial absolute value, we are able to supply a strengthening of the theorem, namely that the preimages...
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...