Time-scale integral inequalities.
It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems.
In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.