Transformace některých nelineárních diferenčních rovnic na nehomogenní lineární diferenční rovnici 1. řádu
In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.
We study k th order systems of two rational difference equations In particular we assume non-negative parameters and non-negative initial conditions. We develop several approaches which allow us to prove that unbounded solutions exist for certain initial conditions in a range of the parameters.
In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.