A general discrete time model of population dynamics in the presence of an infection.
We study non-autonomous rational difference equations. Under the assumption of a periodic non-autonomous parameter, we show that a well known trichotomy result in the autonomous case is preserved in a certain sense which is made precise in the body of the text. In addition we discuss some questions regarding whether periodicity preserves or destroys boundedness.
A class of nonautonomous discrete logistic single-species systems with time-varying pure-delays and feedback control is studied. By introducing a new research method, almost sufficient and necessary conditions for the permanence and extinction of species are obtained. Particularly, when the system degenerates into a periodic system, sufficient and necessary conditions on the permanence and extinction of species are obtained. Moreover, a very important fact is found in our results, that is, the feedback...
This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference...
The behavior of the approximate solutions of two-dimensional nonlinear differential systems with variable coefficients is considered. Using a property of the approximate solution, so called conditional Ulam stability of a generalized logistic equation, the behavior of the approximate solution of the system is investigated. The obtained result explicitly presents the error between the limit cycle and its approximation. Some examples are presented with numerical simulations.
We study the asymptotics of first-order nonlinear difference equations. In particular we present an asymptotic functional equation for potential asymptotic behaviour, and a theorem stating sufficient conditions for the existence of an actual solution with such asymptotic behaviour.