Page 1

Displaying 1 – 13 of 13

Showing per page

Solutions méromorphes sur d’un système d’équations aux différences à coefficients constants et à deux pas récurrents

Jean-Claude Jolly (2002)

Annales de l’institut Fourier

On s’intéresse aux solutions méromorphes sur d’un système de deux équations aux différences à coefficients constants et à deux pas récurrents. Lorsqu’on fait varier ce système, les solutions décrivent une certaine algèbre 𝒟 [ s , t ] en rapport avec les fonctions elliptiques habituelles et celles de deuxième espèce de Hermite, ainsi que la fonction Z de Jacobi. Pour un système donné, les solutions trouvées forment sur le corps des fonctions elliptiques un espace vectoriel de dimension finie, en rapport...

Special solutions of linear difference equations with infinite delay

Milan Medveď (1994)

Archivum Mathematicum

For the difference equation ( ϵ ) x n + 1 = A x n + ϵ k = - n R n - k x k ,where x n Y , Y   is a Banach space,  ϵ is a parameter and  A   is a linear, bounded operator. A sufficient condition for the existence of a unique special solution  y = { y n } n = -   passing through the point  x 0 Y   is proved. This special solution converges to the solution of the equation (0) as  ϵ 0 .

Spectral analysis of unbounded Jacobi operators with oscillating entries

Jan Janas, Marcin Moszyński (2012)

Studia Mathematica

We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...

Spectral theory of corrugated surfaces

Vojkan Jakšić (2001)

Journées équations aux dérivées partielles

We discuss spectral and scattering theory of the discrete laplacian limited to a half-space. The interesting properties of such operators stem from the imposed boundary condition and are related to certain phenomena in surface physics.

Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type

Bilender P. Allahverdiev, Hüseyin Tuna (2020)

Communications in Mathematics

In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.

Stability in linear neutral difference equations with variable delays

Abdelouaheb Ardjouni, Ahcene Djoudi (2013)

Mathematica Bohemica

In this paper we use the fixed point method to prove asymptotic stability results of the zero solution of a generalized linear neutral difference equation with variable delays. An asymptotic stability theorem with a sufficient condition is proved, which improves and generalizes some results due to Y. N. Raffoul (2006), E. Yankson (2009), M. Islam and E. Yankson (2005).

Sulle equazioni alle differenze con incrementi variabili.

Constanza Borelli Forti, István Fenyö (1980)

Stochastica

Let X be an arbitrary Abelian group and E a Banach space. We consider the difference-operators ∆n defined by induction:(∆f)(x;y) = f(x+y) - f(x), (∆nf)(x;y1,...,yn) = (∆n-1(∆f)(.;y1)) (x;y2,...,yn)(n = 2,3,4,..., ∆1=∆, x,yi belonging to X, i = 1,2,...,n; f: X --> E).Considering the difference equation (∆nf)(x;y1,y2,...,yn) = d(x;y1,y2,...,yn) with independent variable increments, the most general solution is given explicitly if d: X x Xn --> E is a given bounded function. Also the...

Sums of an entire function in certain weighted L2-spaces.

Bruno Brive (2003)

Publicacions Matemàtiques

We consider the functional equation f(z+σ) - f(z) = g(z) where σ is a complex number, f and g are entire functions of a complex variable z, with growth conditions. We prove the existence of certain types of solutions of this equation by an a priori estimate method in certain weighted L2-spaces.

Sur les fonctions entières à double pas récurrent

Nicolas Brisebarre, Laurent Habsieger (1999)

Annales de l'institut Fourier

Nous proposons une nouvelle approche et une généralisation d’un problème résolu par J.-P. Bézivin et F. Gramain, dont l’objet est de caractériser les fonctions entières solutions de systèmes de deux équations aux différences finies. De plus, nous donnons un algorithme qui permet de trouver la forme explicite des solutions.

Currently displaying 1 – 13 of 13

Page 1