Terminal value problems for first and second order nonlinear equations on time scales.
A family T(ν), ν ∈ ℝ, of semiinfinite positive Jacobi matrices is introduced with matrix entries taken from the Hahn-Exton q-difference equation. The corresponding matrix operators defined on the linear hull of the canonical basis in ℓ2(ℤ+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1) for |ν| < 1. A convenient description of all self-adjoint extensions is obtained and the spectral problem is analyzed in detail. The spectrum is discrete and the characteristic equation...
We deal with the linear functional equation (E) , where g:(0,∞) → (0,∞) is unknown, is a probability distribution, and ’s are positive numbers. The equation (or some equivalent forms) was considered earlier under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli’s Law of Large Numbers we prove that g has to be constant provided it has a limit at one end of the domain and is bounded at the other end.