Displaying 461 – 480 of 1085

Showing per page

Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments

Özkan Öcalan (2009)

Archivum Mathematicum

This paper is concerned with the nonlinear advanced difference equation with constant coefficients x n + 1 - x n + i = 1 m p i f i ( x n - k i ) = 0 , n = 0 , 1 , where p i ( - , 0 ) and k i { , - 2 , - 1 } for i = 1 , 2 , , m . We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients x n + 1 - x n + i = 1 m p i n f i ( x n - k i ) = 0 , n = 0 , 1 , where p i n 0 and k i { , - 2 , - 1 } for i = 1 , 2 , , m .

Lineární posloupnosti

Miroslav Laitoch (1968)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive to the...

Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov (2015)

Archivum Mathematicum

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

Maximal regularity of discrete and continuous time evolution equations

Sönke Blunck (2001)

Studia Mathematica

We consider the maximal regularity problem for the discrete time evolution equation u n + 1 - T u = f for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup ( T ) n and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent results of...

Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

Tianwei Zhang, Lijun Xu (2019)

Kybernetika

By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed...

Meromorphic solutions of q-shift difference equations

Kai Liu, Xiao-Guang Qi (2011)

Annales Polonici Mathematici

We establish a q-shift difference analogue of the logarithmic derivative lemma. We also investigate the value distributions of q-shift difference polynomials and the growth of solutions of complex q-shift difference equations.

Currently displaying 461 – 480 of 1085