Displaying 941 – 960 of 1092

Showing per page

Stability of nonlinear h -difference systems with n fractional orders

Małgorzata Wyrwas, Ewa Pawluszewicz, Ewa Girejko (2015)

Kybernetika

In the paper we study the subject of stability of systems with h -differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with n fractional orders. The equivalent descriptions of fractional h -difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with n -orders.

Subexponential Solutions of Linear Volterra Difference Equations

Martin Bohner, Nasrin Sultana (2015)

Nonautonomous Dynamical Systems

We study the asymptotic behavior of the solutions of a scalar convolution sum-difference equation. The rate of convergence of the solution is found by determining the asymptotic behavior of the solution of the transient renewal equation.

Sulle equazioni alle differenze con incrementi variabili.

Constanza Borelli Forti, István Fenyö (1980)

Stochastica

Let X be an arbitrary Abelian group and E a Banach space. We consider the difference-operators ∆n defined by induction:(∆f)(x;y) = f(x+y) - f(x), (∆nf)(x;y1,...,yn) = (∆n-1(∆f)(.;y1)) (x;y2,...,yn)(n = 2,3,4,..., ∆1=∆, x,yi belonging to X, i = 1,2,...,n; f: X --> E).Considering the difference equation (∆nf)(x;y1,y2,...,yn) = d(x;y1,y2,...,yn) with independent variable increments, the most general solution is given explicitly if d: X x Xn --> E is a given bounded function. Also the...

Summation equations with sign changing kernels and applications to discrete fractional boundary value problems

Christopher S. Goodrich (2016)

Commentationes Mathematicae Universitatis Carolinae

We consider the summation equation, for t [ μ - 2 , μ + b ] μ - 2 , y ( t ) = γ 1 ( t ) H 1 i = 1 n a i y ξ i + γ 2 ( t ) H 2 i = 1 m b i y ζ i + λ s = 0 b G ( t , s ) f ( s + μ - 1 , y ( s + μ - 1 ) ) in the case where the map ( t , s ) G ( t , s ) may change sign; here μ ( 1 , 2 ] is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that G is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions H 1 and H 2 . Finally, as an application of the abstract existence result,...

Currently displaying 941 – 960 of 1092