Stability of equilibrium points of fractional difference equations with stochastic perturbations.
In the paper we study the subject of stability of systems with -differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with fractional orders. The equivalent descriptions of fractional -difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with -orders.
In this paper, there are derived sufficient conditions for exponential and asymptotic stability of differential and difference systems.
We study the asymptotic behavior of the solutions of a scalar convolution sum-difference equation. The rate of convergence of the solution is found by determining the asymptotic behavior of the solution of the transient renewal equation.
Let X be an arbitrary Abelian group and E a Banach space. We consider the difference-operators ∆n defined by induction:(∆f)(x;y) = f(x+y) - f(x), (∆nf)(x;y1,...,yn) = (∆n-1(∆f)(.;y1)) (x;y2,...,yn)(n = 2,3,4,..., ∆1=∆, x,yi belonging to X, i = 1,2,...,n; f: X --> E).Considering the difference equation (∆nf)(x;y1,y2,...,yn) = d(x;y1,y2,...,yn) with independent variable increments, the most general solution is given explicitly if d: X x Xn --> E is a given bounded function. Also the...
We consider the summation equation, for , in the case where the map may change sign; here is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions and . Finally, as an application of the abstract existence result,...