Previous Page 6

Displaying 101 – 113 of 113

Showing per page

Sur les équations aux différences en une variable

Nicolas Marteau (2000)

Annales de l'institut Fourier

Le sujet de cet article est l’étude des solutions continues sur ou holomorphes sur à valeurs complexes de systèmes de deux équations aux différences à coefficients polynomiaux j = 0 j = J a j ( x ) f ( x + α j ) = k = 0 k = K b k ( x ) f ( x + β k ) = 0 . Avec des hypothèses convenables sur les pas des équations (de nature algébrique et géométrique dans le cas complexe), on montre que ces solutions sont des polynômes exponentiels ou des quotients de polynômes exponentiels par des polynômes. Ces résultats prolongent ceux de J.-P. Bézivin et F. Gramain d’une part et de N. Brisebarre...

Sur les fonctions entières à double pas récurrent

Nicolas Brisebarre, Laurent Habsieger (1999)

Annales de l'institut Fourier

Nous proposons une nouvelle approche et une généralisation d’un problème résolu par J.-P. Bézivin et F. Gramain, dont l’objet est de caractériser les fonctions entières solutions de systèmes de deux équations aux différences finies. De plus, nous donnons un algorithme qui permet de trouver la forme explicite des solutions.

Sur les séries formelles solutions d'équations aux différences polynomiales

A. Barkatou, Anne Duval (1994)

Annales de l'institut Fourier

Dans cet article, nous montrons que toute série formelle (en 1 / x ), resp. toute série de factorielles formelle, solution d’une équation linéaire aux différences finies à coefficients polynômes est Gevrey d’un ordre qui peut se lire sur un, ou plutôt deux, polygone(s) de Newton convenable(s). Nous calculons également l’indice d’un tel opérateur agissant sur des espaces de séries Gevrey factorielles ou ordinaires.

Systèmes aux q -différences singuliers réguliers : classification, matrice de connexion et monodromie

Jacques Sauloy (2000)

Annales de l'institut Fourier

G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux q -différences linéaires, à coefficients rationnels. Il l’a résolu dans le cas générique: l’objet classifiant qu’il introduit est constitué de la matrice de connexion P et des exposants en 0 et . Nous reprenons sa méthode dans le cas général, mais en traitant symétriquement 0 et et sans recours à des solutions à croissance “sauvage”. Lorsque q ...

Currently displaying 101 – 113 of 113

Previous Page 6