Orlicz spaces which are Lp-spaces.
The paper contains sufficient conditions under which all solutions of linear functional equations of the higher order are oscillatory.
The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.
Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation in the class of probability distribution functions.
Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.