D'Alembert's functional equation on groups
Given a (not necessarily unitary) character μ:G → (ℂ∖0,·) of a group G we find the solutions g: G → ℂ of the following version of d’Alembert’s functional equation , x,y ∈ G. (*) The classical equation is the case of μ = 1 and G = ℝ. The non-zero solutions of (*) are the normalized traces of certain representations of G on ℂ². Davison proved this via his work [20] on the pre-d’Alembert functional equation on monoids. The present paper presents a detailed exposition of these results working directly...