Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Una classe di soluzioni con zeri dell'equazione funzionale di Aleksandrov.

Constanza Borelli Forti (1992)

Stochastica

In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.

Une famille de distributions : des paretiennes aux «contra-paretiennes». Applications à l'étude de la concentration urbaine et de son évolution

Marc Barbut (1998)

Mathématiques et Sciences Humaines

Ce texte est consacré à une famille de distributions statistiques — qui comprend les distributions de V. Pareto, celles du type exponentiel et celles que l'on appellera ici «contra-paretiennes» (ou «anti-paretiennes») — dont l'unité tient à ce qu'elles vérifient toutes une même relation fonctionnelle. Celle-ci est d'ailleurs interprétable en termes d'inégalité des distributions ; elle fournit en outre une méthode simple et efficace d'ajustement des distributions de la famille à des «données» observées....

Currently displaying 21 – 30 of 30

Previous Page 2