On the Ulam problem for Euler quadratic mappings.
We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities (1) ψ(f(x)) ≤ β(x,ψ(x)) and (2) α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation (3) φ(f(x)) = g(x,φ(x)), where Y denotes an arbitrary metric space.
Let be arbitrary nonzero real numbers. An -decomposition of a function f:ℝ → ℝ is a sum where is an -periodic function. Such a decomposition is not unique because there are several solutions of the equation with -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the -decomposition is essentially unique. We characterize those periods for which essential uniqueness...
The paper describes the general form of an ordinary differential equation of the order which allows a nontrivial global transformation consisting of the...
The purpose of this paper is to solve two functional equations for generalized Joukowski transformations and to give a geometric interpretation to one of them. Here the Joukowski transformation means the function of a complex variable z.