Displaying 441 – 460 of 503

Showing per page

On the Stability of Orthogonal Additivity

Włodzimierz Fechner, Justyna Sikorska (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We deal with the stability of the orthogonal additivity equation, presenting a new approach to the proof of a 1995 result of R, Ger and the second author. We sharpen the estimate obtained there. Moreover, we work in more general settings, providing an axiomatic framework which covers much more cases than considered before by other authors.

On the stability of the squares of some functional equations

Zenon Moszner (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

We consider the stability, the superstability and the inverse stability of the functional equations with squares of Cauchy’s, of Jensen’s and of isometry equations and the stability in Ulam-Hyers sense of the alternation of functional equations and of the equation of isometry.

On the superstability of generalized d’Alembert harmonic functions

Iz-iddine EL-Fassi (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) f ( x + y + z ) + f ( x + y + σ ( z ) ) + f ( x + σ ( y ) + z ) + f ( σ ( x ) + y + z ) = 4 f ( x ) f ( y ) f ( z ) for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.

On the superstability of the cosine and sine type functional equations

Fouad Lehlou, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) f ( x σ ( y ) a ) + f ( x y a ) = 2 f ( x ) f ( y ) and f(xσ(y)a)−f(xya)=2f(x)f(y), f ( x σ ( y ) a ) - f ( x y a ) = 2 f ( x ) f ( y ) , where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.

Currently displaying 441 – 460 of 503