On the coefficients of the natural iterate of a formal power series. (Über die Koeffizienten der natürlichen Iterierten einer formalen Potenzreihe.)
Given a probability space (Ω,,P) and a subset X of a normed space we consider functions f:X × Ω → X and investigate the speed of convergence of the sequence (fⁿ(x,·)) of the iterates defined by f¹(x,ω ) = f(x,ω₁), .
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.