Displaying 1161 – 1180 of 1591

Showing per page

Practical Ulam-Hyers-Rassias stability for nonlinear equations

Jin Rong Wang, Michal Fečkan (2017)

Mathematica Bohemica

In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations...

Probability distribution solutions of a general linear equation of infinite order

Tomasz Kochanek, Janusz Morawiec (2009)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) in the class of probability distribution functions.

Probability distribution solutions of a general linear equation of infinite order, II

Tomasz Kochanek, Janusz Morawiec (2010)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.

Prolongement analytique et systèmes dynamiques discrets.

Augustin Fruchard (1992)

Collectanea Mathematica

We present a new method of analytic continuation of series out of their disk of convergence. We then exhibit a connection with the phenomenon of bifurcation delay in a planar discrete dynamical system; the limit of the method is then related to a stop phenomenon.

Properties of differences of meromorphic functions

Zong-Xuan Chen, Kwang Ho Shon (2011)

Czechoslovak Mathematical Journal

Let f be a transcendental meromorphic function. We propose a number of results concerning zeros and fixed points of the difference g ( z ) = f ( z + c ) - f ( z ) and the divided difference g ( z ) / f ( z ) .

QL-implications versus D-implications

Margarita Mas, Miquel Monserrat, Joan Torrens (2006)

Kybernetika

This paper deals with two kinds of fuzzy implications: QL and Dishkant implications. That is, those defined through the expressions I ( x , y ) = S ( N ( x ) , T ( x , y ) ) and I ( x , y ) = S ( T ( N ( x ) , N ( y ) ) , y ) respectively, where T is a t-norm, S is a t-conorm and N is a strong negation. Special attention is due to the relation between both kinds of implications. In the continuous case, the study of these implications is focused in some of their properties (mainly the contrapositive symmetry and the exchange principle). Finally, the case of non continuous t-norms...

Quadratic functionals on modules over complex Banach *-algebras with an approximate identity

Dijana Ilišević (2005)

Studia Mathematica

The problem of representability of quadratic functionals by sesquilinear forms is studied in this article in the setting of a module over an algebra that belongs to a certain class of complex Banach *-algebras with an approximate identity. That class includes C*-algebras as well as H*-algebras and their trace classes. Each quadratic functional acting on such a module can be represented by a unique sesquilinear form. That form generally takes values in a larger algebra than the given quadratic functional...

Quasi-homomorphisms

Félix Cabello Sánchez (2003)

Fundamenta Mathematicae

We study the stability of homomorphisms between topological (abelian) groups. Inspired by the "singular" case in the stability of Cauchy's equation and the technique of quasi-linear maps we introduce quasi-homomorphisms between topological groups, that is, maps ω: 𝒢 → ℋ such that ω(0) = 0 and ω(x+y) - ω(x) - ω(y) → 0 (in ℋ) as x,y → 0 in 𝒢. The basic question here is whether ω is approximable by a true homomorphism a in the sense that ω(x)-a(x) → 0 in ℋ as x →...

Currently displaying 1161 – 1180 of 1591