On existence of expansion of a complex function.
We study the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of bounded operators acting on . We mainly investigate subordinated semigroups in the Bochner sense by means of -subordinators. By considering the one-sided stable subordinators, we deduce an integral representation for the original semigroup.
We find all continuous iterative roots of nth order of a Sperner homeomorphism of the plane onto itself.