Page 1

Displaying 1 – 13 of 13

Showing per page

F-limit points in dynamical systems defined on the interval

Piotr Szuca (2013)

Open Mathematics

Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider...

F-Normalreihen.

Herbert Möller (1977)

Journal für die reine und angewandte Mathematik

Fonctions multisommables

Bernard Malgrange, Jean-Pierre Ramis (1992)

Annales de l'institut Fourier

La notion de multisommabilité intervient dans la théorie des équations différentielles lorsque des exponentielles d’ordres différents se mélangent. Elle a été introduite par J. Écalle et étudié récemment par plusieurs auteurs. On en donne ici une définition simple, qui fait uniquement intervenir des propriétés de décroissance exponentielle.

Four dimensional matrix characterization of double oscillation via RH-conservative and RH-multiplicative matrices

Richard Patterson, Mulatu Lemma (2008)

Open Mathematics

In 1939 Agnew presented a series of conditions that characterized the oscillation of ordinary sequences using ordinary square conservative matrices and square multiplicative matrices. The goal of this paper is to present multidimensional analogues of Agnew’s results. To accomplish this goal we begin by presenting a notion for double oscillating sequences. Using this notion along with square RH-conservative matrices and square RH-multiplicative matrices, we will present a series of characterization...

Fractional Korovkin Theory Based on Statistical Convergence

Anastassiou, George A., Duman, Oktay (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 41A25, 41A36, 40G15.In this paper, we obtain some statistical Korovkin-type approximation theorems including fractional derivatives of functions. We also show that our new results are more applicable than the classical ones.

Currently displaying 1 – 13 of 13

Page 1