Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Dense sums

G. Fano, G. Gallavotti (1972)

Annales de l'I.H.P. Physique théorique

Développements asymptotiques q -Gevrey et séries G q -sommables

Changgui Zhang (1999)

Annales de l'institut Fourier

Nous donnons une version q -analogue de l’asymptotique Gevrey et de la sommabilité de Borel, dues respectivement à G. Watson et E. Borel et systématiquement développées depuis une quinzaine d’années par J.-P. Ramis, Y. Sibuya, etc. Le but de ces auteurs était l’étude des équations différentielles dans le champ complexe. De même notre but est l’étude des équations aux q -différences dans le champ complexe, dans la ligne de G.D. Birkhoff et W.J. Trjitzinsky.Plus précisément, nous introduisons une nouvelle...

Dieudonné-type theorems for lattice group-valued k -triangular set functions

Antonio Boccuto, Xenofon Dimitriou (2019)

Kybernetika

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for k -triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.

Discrete planes, 2 -actions, Jacobi-Perron algorithm and substitutions

Pierre Arnoux, Valérie Berthé, Shunji Ito (2002)

Annales de l’institut Fourier

We introduce two-dimensional substitutions generating two-dimensional sequences related to discrete approximations of irrational planes. These two-dimensional substitutions are produced by the classical Jacobi-Perron continued fraction algorithm, by the way of induction of a 2 -action by rotations on the circle. This gives a new geometric interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space of 2 -actions by rotations.

Currently displaying 1 – 20 of 34

Page 1 Next