Page 1 Next

Displaying 1 – 20 of 28

Showing per page

La théorie des séries de Nicole Oresme dans sa perspective aristotélicienne. ‘Questions 1 et 2 sur la Géométrie d’Euclide’

Edmond Mazet (2003)

Revue d'histoire des mathématiques

Oresme est connu, entre autres choses, pour avoir développé dans ses Questions sur la Géométrie d’Euclide une « théorie des séries », incluant la nature et la sommation des séries géométriques ainsi que la divergence de la série harmonique. Dans le présent article on se propose de voir en quel sens Oresme a réellement développé une théorie des séries, en situant cette théorie dans le cadre des conceptions mathématiques médiévales. Cette théorie peut être vue comme un approfondissement mathématique...

Lacunary convergence of series in L0 revisited.

Lech Drewnowski (2000)

Revista Matemática Complutense

A simpler proof is given for the recent result of I. Labuda and the author that a series in the space L0 (lambda) is subseries convergent if each of its lacunary subseries converges.

Lacunary equi-statistical convergence of positive linear operators

Hüseyin Aktuğlu, Halil Gezer (2009)

Open Mathematics

In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation...

Lacunary strong ( A σ , p ) -convergence

Tunay Bilgin (2005)

Czechoslovak Mathematical Journal

The definition of lacunary strongly convergence is extended to the definition of lacunary strong ( A σ , p ) -convergence with respect to invariant mean when A is an infinite matrix and p = ( p i ) is a strictly positive sequence. We study some properties and inclusion relations.

Lacunary strong convergence with respect to a sequence of modulus functions

Serpil Pehlivan, Brian Fisher (1995)

Commentationes Mathematicae Universitatis Carolinae

The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.

Lacunary weak statistical convergence

Fatih Nuray (2011)

Mathematica Bohemica

The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and -convergence to weak -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.

Leibniz Series forπ

Karol Pąk (2016)

Formalized Mathematics

In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1. π 4 = n = 0 - 1 n 2 · n + 1 . The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is item 26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Limit points of arithmetic means of sequences in Banach spaces

Roman Lávička (2000)

Commentationes Mathematicae Universitatis Carolinae

We shall prove the following statements: Given a sequence { a n } n = 1 in a Banach space 𝐗 enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) { b n } n = 1 of the sequence { a n } n = 1 such that lim n 1 n j = 1 n b j = a whenever a belongs to the closed convex hull of the set of weak limit points of { a n } n = 1 . In case 𝐗 has the Banach-Saks property and { a n } n = 1 is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the...

Limit points of eigenvalues of truncated unbounded tridiagonal operators

E.K. Ifantis, C.G. Kokologiannaki, E. Petropoulou (2007)

Open Mathematics

Let T be a self-adjoint tridiagonal operator in a Hilbert space H with the orthonormal basis {e n}n=1∞, σ(T) be the spectrum of T and Λ(T) be the set of all the limit points of eigenvalues of the truncated operator T N. We give sufficient conditions such that the spectrum of T is discrete and σ(T) = Λ(T) and we connect this problem with an old problem in analysis.

Lineární posloupnosti

Miroslav Laitoch (1968)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Currently displaying 1 – 20 of 28

Page 1 Next