The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Vector series whose lacunary subseries converge

Lech Drewnowski, Iwo Labuda (2000)

Studia Mathematica

The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series n x n in a topological vector space X is called ℒ-convergent if each of its lacunary subseries k x n k (i.e. those with n k + 1 - n k ) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence...

Vector-valued sequence space B M C ( X ) and its properties

Qing-Ying Bu (1996)

Commentationes Mathematicae Universitatis Carolinae

In this paper, a vector topology is introduced in the vector-valued sequence space BMC ( X ) and convergence of sequences and sequentially compact sets in BMC ( X ) are characterized.

Currently displaying 1 – 7 of 7

Page 1