Maps preserving convergence of series
Let , where, for 1 ≤ r < ∞, (resp., ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values, the condition...
The notion of oscillation for ordinary sequences was presented by Hurwitz in 1930. Using this notion Agnew and Hurwitz presented regular matrix characterization of the resulting sequence space. The primary goal of this article is to extend this definition to double sequences, which grants us the following definition: the double oscillation of a double sequence of real or complex number is given P-lim sup(m,n)→∞;(α,β)→∞|S m,n-S α,β|. Using this concept a matrix characterization of double oscillation...