The General Neville-Aitken-Algorithm and Some Applications.
The aim of this paper is to obtain a generalization of W. A. Woyczyński and B. Ram results concerning integrability of power series in terms of their coefficients for the class GM of general monotonic sequences.
We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H1-regular whereas, on open surfaces, edge...
We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let be the space of piecewise linear continuous functions on the torus with knots . Finally, let be the orthogonal projection operator from L²([0,1)) onto . The main result is . This shows in particular that the Lebesgue constant of the classical Franklin...
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
MSC 2010: 41A10, 41A15, 41A25, 41A36For functions belonging to the classes C2[0; 1] and C3[0; 1], we establish the lower estimate with an explicit constant in approximation by Bernstein polynomials in terms of the second order Ditzian-Totik modulus of smoothness. Several applications to some concrete examples of functions are presented.
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...