Rekursionsformeln für die zentralen Momente der PÖLYA- und der Beta-Verteilung.
NURBS (Non-Uniform Rational B-Splines) belong to special approximation curves and surfaces which are described by control points with weights and B-spline basis functions. They are often used in modern areas of computer graphics as free-form modelling, modelling of processes. In literature, NURBS surfaces are often called tensor product surfaces. In this article we try to explain the relationship between the classic algebraic point of view and the practical geometrical application on NURBS.
The present note discusses an interesting positive linear operator which was recently introduced by J.P. King. New estimates in terms of the first and second modulus of continuity are given, and iterates of the operators are considered as well. For general King operators the second moments are minimized.
We give an overview of the behavior of the classical Hilbert Transform H seen as an operator on Lp(R) and on weak-Lp(R), then we consider other operators related to H. In particular, we discuss various versions of Discrete Hilbert Transform and Fourier multipliers periodized in frequency, giving some partial results and stating some conjectures about their sharp bounds Lp(R) → Lp(R), for 1 < p < ∞.
We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space on a regular domain of The result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric entropy satisfies H(ε) ~ ε-d/s. This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound,...
We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space on a regular domain of The result is: if then the Kolmogorov metric entropy satisfies . This...
Some general representation formulae for (C₀) m-parameter operator semigroups with rates of convergence are obtained by the probabilistic approach and multiplier enlargement method. These cover all known representation formulae for (C₀) one- and m-parameter operator semigroups as special cases. When we consider special semigroups we recover well-known convergence theorems for multivariate approximation operators.