Displaying 61 – 80 of 313

Showing per page

Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators

Mohammad Mursaleen, Ahmed A. H. Alabied (2018)

Mathematica Bohemica

We introduce modified ( p , q ) -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D n , p , q * and compute the rate of convergence for the function f belonging to the class Lip M ( γ ) .

Approximation properties of q-Baskakov operators

Zoltán Finta, Vijay Gupta (2010)

Open Mathematics

We establish direct estimates for the q-Baskakov operator introduced by Aral and Gupta in [2], using the second order Ditzian-Totik modulus of smoothness. Furthermore, we define and study the limit q-Baskakov operator.

Asymptotic distribution of poles and zeros of best rational approximants to x α on [0,1]

E. Saff, H. Stahl (1995)

Banach Center Publications

Let r n * n n be the best rational approximant to f ( x ) = x α , 1 > α > 0, on [0,1] in the uniform norm. It is well known that all poles and zeros of r n * lie on the negative axis < 0 . In the present paper we investigate the asymptotic distribution of these poles and zeros as n → ∞. In addition we determine the asymptotic distribution of the extreme points of the error function e n = f - r n * on [0,1], and survey related convergence results.

Certain family of Durrmeyer type operators

Vijay Gupta (2009)

Annales UMCS, Mathematica

The present paper is a continuation of the earlier work of the author. Here we study the rate of convergence of certain Durrmeyer type operators for function having derivatives of bounded variation.

Currently displaying 61 – 80 of 313