Saturation theorem for the combinations of modified Beta operators in -spaces.
It is known that for determining sets Markov’s property is equivalent to Bernstein’s property. We are interested in finding a generalization of this fact for sets which are not determining. In this paper we give examples of sets which are not determining, but have the Bernstein and generalized Markov properties.
We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given.
We obtain simultaneous approximation equivalence theorem for Szász-Mirakian quasi-interpolants.
This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on . Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.
For some classes of functions locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval , the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of is estimated.
Using A-statistical convergence, we prove a Korovkin type approximation theorem which concerns the problem of approximating a function f by means of a sequence Tₙ(f;x) of positive linear operators acting from a weighted space into a weighted space .
In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.
In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.
In this paper, considering A-statistical convergence instead of Pringsheim’s sense for double sequences, we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on the space of all real valued Bögel-type continuous and periodic functions on the whole real two-dimensional space. A strong application is also presented. Furthermore, we obtain some rates of A-statistical convergence in our approximation.
Unbiased risk estimation, à la Stein, is studied for infinitely divisible laws with finite second moment.