Algorithms for cardinal interpolation using box splines and radial basis functions.
The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms....
The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in , is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.