On the regular Sturm-Liouville transform.
In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators and . More precisely, we prove that and map with , boundedly and continuously. In addition, we show that the discrete versions and map boundedly and map continuously. Specially, we obtain the sharp variation inequalities of and , that is, if , where is the total variation of on and is the set of all functions satisfying .
We seek to demonstrate a connection between refinable quasi-affine systems and the discrete wavelet transform known as the à trous algorithm. We begin with an introduction of the bracket product, which is the major tool in our analysis. Using multiresolution operators, we then proceed to reinvestigate the equivalence of the duality of refinable affine frames and their quasi-affine counterparts associated with a fairly general class of scaling functions that includes the class of compactly supported...
It is proved that if is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 < μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form , where for all q>2, with the following properties: 1. For any p ∈ [1,2) and there are numbers , k=1,2,…, = 1 or 0, such that 2. For every p ∈ [1,2) and there are a function with g(x) = f(x) on E and numbers , k=1,2,…, or 0, such that ,...
Properties of representation systems with respect to summation methods are studied. For a given representation system with respect to a given summation method we study, in particular, the question of the stability of that property after deleting finitely many elements. As a consequence we obtain the existence of null series for the systems with respect to a given method of summation.
We consider the boundedness of certain singular integral operators that arose in the study of Sobolev spaces on Lipschitz curves, [P1]. The standard theory available (David and Journé's T1 Theorem, for instance; see [D]) does not apply to this case becuase the operators are not necessarily Calderón-Zygmund operators, [Ch]. One of these operators gives an explicit formula for the resolvent at λ = 1 of the dyadic paraproduct, [Ch].
Two-sided estimates of Schatten-von Neumann norms for weighted Volterra integral operators are established. Analogous problems for some potential-type operators defined on Rn are solved.
The problem of strict convexity of the Besicovitch-Orlicz space of almost periodic functions is considered here in connection with the Orlicz norm. We give necessary and sufficient conditions in terms of the function f generating the space.