Boundary stabilization of a coupled system of nondissipative Schrödinger equations.
We consider discrete versions of Morrey spaces introduced by Gunawan et al. in papers published in 2018 and 2019. We prove continuity and compactness of multiplication operators and commutators acting on them.
We study a multilinear oscillatory integral with rough kernel and establish a boundedness criterion.
The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.
Let be the Lie group endowed with the Riemannian symmetric space structure. Let be a distinguished basis of left-invariant vector fields of the Lie algebra of and define the Laplacian . In this paper we consider the first order Riesz transforms and , for . We prove that the operators , but not the , are bounded from the Hardy space to . We also show that the second-order Riesz transforms are bounded from to , while the transforms and , for , are not.
We prove the and boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where , K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.