Boundedness of classical operators on classical Lorentz spaces
We obtain a necessary and sufficient condition for boundedness of commutators of certain oscillatory integral operators and Lipschitz functions.
In the setting of spaces of homogeneous type, it is shown that the commutator of Calderón-Zygmund type operators as well as the commutator of a potential operator with a BMO function are bounded in a generalized grand Morrey space. Interior estimates for solutions of elliptic equations are also given in the framework of generalized grand Morrey spaces.
The author investigates the boundedness of the higher order commutator of strongly singular convolution operator, , on Herz spaces and , and on a new class of Herz-type Hardy spaces and , where 0 < p ≤ 1 < q < ∞, α = n(1-1/q) and b ∈ BMO(ℝⁿ).
We study Fourier integral operators of Hörmander’s type acting on the spaces , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on if the mapping is constant on the fibres, of codimension r, of an affine...
In the context of variable exponent Lebesgue spaces equipped with a lower Ahlfors measure we obtain weighted norm inequalities over bounded domains for the centered fractional maximal function and the fractional integral operator.
We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fsp,q(Rn), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fsp,q(Rn), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1p(Rn).
The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with...
The author studies the commutators generated by a suitable function a(x) on ℝⁿ and the oscillatory singular integral with rough kernel Ω(x)|x|ⁿ and polynomial phase, where Ω is homogeneous of degree zero on ℝⁿ, and a(x) is a BMO function or a Lipschitz function. Some mapping properties of these higher order commutators on , which are essential improvements of some well known results, are given.
We consider Littlewood-Paley functions associated with a non-isotropic dilation group on . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted spaces, , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).
The boundedness(1 < p < ∞) of Littlewood-Paley’s g-function, Lusin’s S function, Littlewood-Paley’s -functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley’s g-function. In this note, we treat counterparts and to S and . The definition of is as follows: , where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 < β ≤ 1) on the unit sphere , and . We show that...
In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces for , and . Specifically, we show that, for suitable values of and , if (Sawyer’s classes of weights) then the one-sided fractional integral can be extended to a bounded operator from to . The result is a consequence of the pointwise inequality where denotes the Calderón maximal function.
We obtain the boundedness of Calderón-Zygmund singular integral operators of non-convolution type on Hardy spaces for , where is a space of homogeneous type in the sense of Coifman and Weiss (1971), and is the regularity exponent of the kernel of the singular integral operator . Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was...
Let w be in the Muckenhoupt weight class. We show that the Riesz transforms are bounded on the weighted Carleson measure space , the dual of the weighted Hardy space , 0 < p ≤ 1.
The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set , where is a star-shaped Lipschitz curve, . Under suitable conditions on F and z, the operators are given by (1) We identify a class of kernels of the stated type that give rise to bounded operators on . We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.
We introduce a new type of variable exponent function spaces of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents and are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO...