Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic PDEs.
We investigate the Fourier transforms of functions in the Sobolev spaces . It is proved that for any function the Fourier transform f̂ belongs to the Lorentz space , where . Furthermore, we derive from this result that for any mixed derivative the weighted norm can be estimated by the sum of -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
We study one-dimensional oscillator integrals which arise as Fourier-Stieltjes transforms of smooth, compactly supported measures on smooth curves in Euclidean spaces and determine their decay at infinity, provided the curves satisfy certain geometric conditions.
We consider the maximal function where and 0 < a < 1. We prove the global estimate , s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.
The aim of this paper is the study of the convergence of algorithms involved in the resolution of two scale equations. They are fixed point algorithms, often called cascade algorithms, which are used in the construction of wavelets. We study their speed of convergence in Lebesgue and Besov spaces, and show that the quality of the convergence depends on two independent factors. The first one, as we could foresee, is the regularity of the scaling function which is the solution of the equation. The...
We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].
A set S of integers is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number α(S) ∈ [0,1/2] such that κ(S) = |exp(2πiα(S)) - 1|. We show that for integers m > 1 and d ≥ 1, and α1,m,m²,... = 1/(2m).