Fejer kernels for Fourier series on Tn and on compact Lie groups.
The search session has expired. Please query the service again.
Giancarlo Travaglini (1994)
Mathematische Zeitschrift
Hubert Berens, Yuan Xu (1996)
Mathematische Zeitschrift
Ferenc Weisz (1999)
Colloquium Mathematicae
The two-dimensional classical Hardy spaces are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from to (1/2 < p ≤ ∞) and is of weak type where the Hardy space is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ ⊃ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on whenever 1/2 < p < ∞. Thus, in case f ∈ , the Fejér means...
Jeffrey S. Geronimo, Plamen Iliev (2014)
Journal of the European Mathematical Society
We give a complete characterization of the positive trigonometric polynomials on the bi-circle, which can be factored as where is a polynomial nonzero for and . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities relating...
Simon, Barry (2006)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
W.R. Madych (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Ole Christensen (2000)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Soulaymane Korry (2001)
Collectanea Mathematica
Piotr Nayar (2014)
Colloquium Mathematicae
We consider Boolean functions defined on the discrete cube equipped with a product probability measure , where and γ = √(α/β). This normalization ensures that the coordinate functions are orthonormal in . We prove that if the spectrum of a Boolean function is concentrated on the first two Fourier levels, then the function is close to a certain function of one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej, Oleszkiewicz and Wojtaszczyk. Moreover, in the symmetric...
Raphaël Danchin (2000/2001)
Séminaire Équations aux dérivées partielles
Pierre Gilles Lemarié-Rieusset (1991)
Revista Matemática Iberoamericana
The main topic of this paper is the study of compactly supported functions in a multi-resolution analysis and especially of the minimally supported ones. We will show that this class of functions is stable under differentiation and integration and how to compute basic quantities with them.
Hedi Daboussi, Jacques Peyrière (1973)
Colloquium Mathematicae
Pierre Gilles Lemarié-Rieusset (1997)
Revista Matemática Iberoamericana
The theory of convergence for (non-stationary) scaling functions and the approximation of interpolating scaling filters by means of Bernstein polynomials, allow us to construct a non-stationary interpolating scaling function with interesting approximation properties.
Alain Yger (1981)
Annales de l'institut Fourier
Soit un réel de . Nous étudions le système d’équations de convolution suivantNous démontrons que les exponentielles polynômes solutions de sont denses dans l’espace des solutions du système d’équations; l’idéal de engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de régulière...
François Gramain (1972/1973)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Georges Dostor (1880)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
Robert Kaufman (1975)
Bulletin de la Société Mathématique de France
Robert Fefferman (1986)
Revista Matemática Iberoamericana
Clearly, one of the most basic contributions to the fields of real variables, partial differential equations and Fourier analysis in recent times has been the celebrated theorem of Calderón and Zygmund on the boundedness of singular integrals on Rn [1].
Fernando Mário de Oliveira Filho, Frank Vallentin (2010)
Journal of the European Mathematical Society
We derive new upper bounds for the densities of measurable sets in which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions . This gives new lower bounds for the measurable chromatic number in dimensions . We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems of Furstenberg,...
Machedon, M. (1998)
Documenta Mathematica