On fractional derivatives
A two-sided sequence with values in a complex unital Banach algebra is a cosine sequence if it satisfies for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence is bounded if . A (bounded) group decomposition for a cosine sequence is a representation of c as for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, here referred...
This paper deals with atomic decomposition and factorization of functions in the holomorphic Hardy space . Such representation theorems have been proved for strictly pseudoconvex domains. The atomic decomposition has also been proved for convex domains of finite type. Here the Hardy space was defined with respect to the ordinary Euclidean surface measure on the boundary. But for domains of finite type, it is natural to define with respect to a certain measure that degenerates near Levi-flat points...
We consider multi-dimensional Hartman almost periodic functions and sequences, defined with respect to different averaging sequences of subsets in or . We consider the behavior of their Fourier-Bohr coefficients and their spectrum, depending on the particular averaging sequence, and we demonstrate this dependence by several examples. Extensions to compactly generated, locally compact, abelian groups are considered. We define generalized Marcinkiewicz spaces based upon arbitrary measure spaces...
There are known wavelets with exponential decay on infinity [2,3,4] and wavelets with compact support [5]. But these functions have finite smoothness. It is known that there do not exist infinitely differentiable compactly supported wavelets.
We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.