Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 42-XX Harmonic analysis on Euclidean spaces
  • 42Axx Harmonic analysis in one variable
  • 42A99 None of the above, but in this section

42Axx Harmonic analysis in one variable

  • 42A05 Trigonometric polynomials, inequalities, extremal problems
  • 42A10 Trigonometric approximation
  • 42A15 Trigonometric interpolation
  • 42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
  • 42A20 Convergence and absolute convergence of Fourier and trigonometric series
  • 42A24 Summability and absolute summability of Fourier and trigonometric series
  • 42A32 Trigonometric series of special types (positive coefficients, monotonic coefficients, etc.)
  • 42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
  • 42A45 Multipliers
  • 42A50 Conjugate functions, conjugate series, singular integrals
  • 42A55 Lacunary series of trigonometric and other functions; Riesz products
  • 42A61 Probabilistic methods
  • 42A63 Uniqueness of trigonometric expansions, uniqueness of Fourier expansions, Riemann theory, localization
  • 42A65 Completeness of sets of functions
  • 42A70 Trigonometric moment problems
  • 42A75 Classical almost periodic functions, mean periodic functions
  • 42A82 Positive definite functions
  • 42A85 Convolution, factorization
  • 42A99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 1 of 1

Showing per page

Notiz zu dem Aufsatze: Beweis, dass eine für jeden reellen Werth von x durch eine trigonometrische Reihe gegebene Function f(x) sich nur auf eine einzige Weise in dieser Form darstellen lässt. Bd. 72, Seite 139

G. Cantor (1871)

Journal für die reine und angewandte Mathematik

Currently displaying 1 – 1 of 1

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7