Lipschitz and bi-Lipschitz functions.
In the setting of a metric measure space (X, d, μ) with an n-dimensional Radon measure μ, we give a necessary and sufficient condition for the boundedness of Calderón-Zygmund operators associated to the measure μ on Lipschitz spaces on the support of μ. Also, for the Euclidean space Rd with an arbitrary Radon measure μ, we give several characterizations of Lipschitz spaces on the support of μ, Lip(α,μ), in terms of mean oscillations involving μ. This allows us to view the "regular" BMO space of...
For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) spaces, using the usual square function defined by a dyadic partition.
Let 𝔾 be a homogeneousgroup on ℝⁿ whose multiplication and inverse operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator with Llog⁺L function kernel on ≫ is both of type (p,p) and of weak type (1,1). In this paper, the same results are proved for the Littlewood-Paley g-functions on 𝔾
We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on .
We establish the Lp boundedness of singular integrals with kernels which belong to block spaces and are supported by subvarities.
Mathematics Subject Classification: 47B38, 31B10, 42B20, 42B15.We obtain the Lp → Lq - estimates for the fractional acoustic potentials in R^n, which are known to be negative powers of the Helmholtz operator, and some related operators. Some applications of these estimates are also given.* This paper has been supported by Russian Fond of Fundamental Investigations under Grant No. 40–01–008632 a.
Soit une fonction polynôme de dans . On considère la mesure sur le graphe de dont la projection sur est la mesure de Lebesgue. On étudie ici le comportement de la transformée de Fourier lorsque approche de 0 (de telles distributions apparaissent comme caractères de représentations de groupes de Lie nilpotents). On étend des résultats de L. Corwin et F.P. Greenleaf (Comm. on Pure and Applied Math., 31 (1975), 681–705) au cas où le gradient de la partie de homogène de plus haut degré...
We prove the boundedness of the Marcinkiewicz integral operators on under the condition that . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.
We show various estimates for Schrödinger operators on and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of and their gradients.