Continuity for multilinear Marcinkiewicz operators on certain Hardy spaces.
In this paper, we obtain some strong and weak type continuity properties for the maximal operator associated with the commutator of the Bochner-Riesz operator on Hardy spaces, Hardy type spaces and weak Hardy type spaces.
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.
We show that -bounded singular integrals in metric spaces with respect to general measures and kernels converge weakly. This implies a kind of average convergence almost everywhere. For measures with zero density we prove the almost everywhere existence of principal values.
We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces , where G is a homogeneous group.
Let , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let , and . Let φ₁,...,φₙ be real functions in such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on given by , where and dx denotes the Lebesgue measure on ℝⁿ. Let and let be the operator norm of from into , where the spaces are taken with respect to the Lebesgue measure. The type set is defined by . In the case for 1 ≤ i,k ≤ n we characterize the type set under...
We wish to acknowledge and correct an error in a proof in our paper On the product theory of singular integrals, which appeared in Revista Matemática Iberoamericana, volume 20, number 2, 2004, pages 531-561.
Étant donné une courbe de Jordan rectifiable du plan complexe admettant le paramétrage par la longueur d’arc , on étudie les relations entre la géométrie de et la position dans des deux espaces de Hardy associés à . Plus précisément, on montre que si est la somme presque-orthogonale des espaces de Hardy, la courbe satisfait à une condition de type corde-arc, c’est-à-dire que pour tout et tout de , . Ce résultat est une sorte de réciproque à la généralisation du théorème de Calderón...