Displaying 221 – 240 of 693

Showing per page

Gagliardo-Nirenberg inequalities in weighted Orlicz spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2006)

Studia Mathematica

We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.

Generalized Besov type spaces on the Laguerre hypergroup

Miloud Assal, Hacen Ben Abdallah (2005)

Annales mathématiques Blaise Pascal

In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.

Generalized Hörmander conditions and weighted endpoint estimates

María Lorente, José María Martell, Carlos Pérez, María Silvina Riveros (2009)

Studia Mathematica

We consider two-weight estimates for singular integral operators and their commutators with bounded mean oscillation functions. Hörmander type conditions in the scale of Orlicz spaces are assumed on the kernels. We prove weighted weak-type estimates for pairs of weights (u,Su) where u is an arbitrary nonnegative function and S is a maximal operator depending on the smoothness of the kernel. We also obtain sufficient conditions on a pair of weights (u,v) for the operators to be bounded from L p ( v ) to...

Geometric Fourier analysis

Antonio Cordoba (1982)

Annales de l'institut Fourier

In this paper we continue the study of the Fourier transform on R n , n 2 , analyzing the “almost-orthogonality” of the different directions of the space with respect to the Fourier transform. We prove two theorems: the first is related to an angular Littlewood-Paley square function, and we obtain estimates in terms of powers of log ( N ) , where N is the number of equal angles considered in R 2 . The second is an extension of the Hardy-Littlewood maximal function when one consider cylinders of R n , n 2 , of fixed eccentricity...

Good-λ inequalities for wavelets of compact support

Sarah V. Cook (2004)

Colloquium Mathematicae

For a wavelet ψ of compact support, we define a square function S w and a maximal function NΛ. We then obtain the L p equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications

Xiaming Chen, Renjin Jiang, Dachun Yang (2016)

Analysis and Geometry in Metric Spaces

Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable...

Hardy spaces and the Dirichlet problem on Lipschitz domains.

Carlos E. Kenig, Jill Pipher (1987)

Revista Matemática Iberoamericana

Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p &lt; 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.

Currently displaying 221 – 240 of 693