Displaying 21 – 40 of 71

Showing per page

Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators

Qingying Xue (2013)

Studia Mathematica

The following iterated commutators T , Π b of the maximal operator for multilinear singular integral operators and I α , Π b of the multilinear fractional integral operator are introduced and studied: T , Π b ( f ) ( x ) = s u p δ > 0 | [ b , [ b , [ b m - 1 , [ b , T δ ] ] m - 1 ] ] ( f ) ( x ) | , I α , Π b ( f ) ( x ) = [ b , [ b , [ b m - 1 , [ b , I α ] ] m - 1 ] ] ( f ) ( x ) , where T δ are the smooth truncations of the multilinear singular integral operators and I α is the multilinear fractional integral operator, b i B M O for i = 1,…,m and f⃗ = (f1,…,fm). Weighted strong and L(logL) type end-point estimates for the above iterated commutators associated with two classes of multiple weights,...

Weighted Estimates for the Maximal Operator of a Multilinear Singular Integral

Xi Chen (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

An improved multiple Cotlar inequality is obtained. From this result, weighted norm inequalities for the maximal operator of a multilinear singular integral including weak and strong estimates are deduced under the multiple weights constructed recently.

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà, Joaquim Martín (2000)

Studia Mathematica

Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as A p -weights of Muckenhoupt and B p -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family M p of weights w for which the Hardy transform is L p ( w ) -bounded. A B p -weight is precisely one for which its Hardy transform is in M p , and also a weight whose indefinite...

Weighted inequalities and the shape of approach regions

José García, Javier Soria (1999)

Studia Mathematica

We characterize geometric properties of a family of approach regions by means of analytic properties of the class of weights related to the boundedness of the maximal operator associated with this family.

Weighted inequalities for commutators of one-sided singular integrals

María Lorente, María Silvina Riveros (2002)

Commentationes Mathematicae Universitatis Carolinae

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calder’on-Zygmund kernel with support in ( - , 0 ) ) with BMO functions. We give the one-sided version of the results in C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756 and C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages...

Weighted inequalities for one-sided maximal functions in Orlicz spaces

Pedro Ortega Salvador (1998)

Studia Mathematica

Let M g + be the maximal operator defined by M g + ( x ) = s u p h > 0 ( ʃ x x + h | | g ) / ( ʃ x x + h g ) , where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy Δ 2 . We characterize the pairs of positive functions (u,ω) such that the weak type inequality u ( x | M g + ( x ) > λ ) C / ( Φ ( λ ) ) ʃ Φ ( | | ) ω holds for every ⨍ in the Orlicz space L Φ ( ω ) . We also characterize the positive functions ω such that the integral inequality ʃ Φ ( | M g + | ) ω ʃ Φ ( | | ) ω holds for every L Φ ( ω ) . Our results include some already obtained for functions in L p and yield as consequences...

Weighted inequalities for rough square functions through extrapolation

Javier Duoandikoetxea, Edurne Seijo (2002)

Studia Mathematica

Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other L p spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.

Weighted inequalities for square and maximal functions in the plane

Javier Duoandikoetxea, Adela Moyua (1992)

Studia Mathematica

We prove weighted inequalities for square functions of Littlewood-Paley type defined from a decomposition of the plane into sectors of lacunary aperture and for the maximal function over a lacunary set of directions. Some applications to multiplier theorems are also given.

Currently displaying 21 – 40 of 71