-orbit functions.
In this paper, we rule out the possibility that a certain method of proof in the sums differences conjecture can settle the Kakeya Conjecture.
Soit un réel de . Nous étudions le système d’équations de convolution suivantNous démontrons que les exponentielles polynômes solutions de sont denses dans l’espace des solutions du système d’équations; l’idéal de engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de régulière...
We extend the results of paper of F. Móricz (2010), where necessary conditions were given for the -convergence of double Fourier series. We also give necessary and sufficient conditions for the -convergence under appropriate assumptions.
We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the -metric, where . The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the -metric, where .
In this paper we study distribution and continuity properties of functions satisfying a vanishing mean oscillation property with a lag mapping on a space of homogeneous type.